منابع مشابه
Exact Hybrid Covariance Thresholding for Joint Graphical Lasso
This paper studies precision matrix estimation for multiple related Gaussian graphical models from a dataset consisting of different classes, based upon the formulation of this problem as group graphical lasso. In particular, this paper proposes a novel hybrid covariance thresholding algorithm that can effectively identify zero entries in the precision matrices and split a large joint graphical...
متن کاملFused Multiple Graphical Lasso
In this paper, we consider the problem of estimating multiple graphical models simultaneously using the fused lasso penalty, which encourages adjacent graphs to share similar structures. A motivating example is the analysis of brain networks of Alzheimer’s disease using neuroimaging data. Specifically, we may wish to estimate a brain network for the normal controls (NC), a brain network for the...
متن کاملPathway Graphical Lasso
Graphical models provide a rich framework for summarizing the dependencies among variables. The graphical lasso approach attempts to learn the structure of a Gaussian graphical model (GGM) by maximizing the log likelihood of the data, subject to an l1 penalty on the elements of the inverse co-variance matrix. Most algorithms for solving the graphical lasso problem do not scale to a very large n...
متن کاملRobust Gaussian Graphical Modeling with the Trimmed Graphical Lasso
Gaussian Graphical Models (GGMs) are popular tools for studying network structures. However, many modern applications such as gene network discovery and social interactions analysis often involve high-dimensional noisy data with outliers or heavier tails than the Gaussian distribution. In this paper, we propose the Trimmed Graphical Lasso for robust estimation of sparse GGMs. Our method guards ...
متن کاملCoordinate descent algorithm for covariance graphical lasso
Bien and Tibshirani (2011) have proposed a covariance graphical lasso method that applies a lasso penalty on the elements of the covariance matrix. This method is definitely useful because it not only produces sparse and positive definite estimates of the covariance matrix but also discovers marginal independence structures by generating exact zeros in the estimated covariance matrix. However, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2016
ISSN: 1556-5068
DOI: 10.2139/ssrn.2777492